Tuesday, September 18, 2018

mPEG-PLGA from PolySciTech used to create peptide-loaded nanoparticles to prevent bacterial biofilm

One of the problematic features of bacteria in the oral cavity is their tendency to adhere strongly to one another forming surfaces known as ‘biofilm.’ Biofilm is comprised of layers of bacteria all attached to one another that is very difficult to treat or remove. Recently, researchers at The University of Louisville used mPEG-PLGA (Polyvivo AK026) from PolySciTech (www.polyscitech.com) to create BAR peptide loaded nanoparticles that prevent bacteria from sticking to one another. These particles were found to be effective at preventing biofilm formation. This research holds promise to improve periodontal treatments. Read more: Mahmoud, Mohamed Y., Donald R. Demuth, and Jill M. Steinbach-Rankins. "BAR-encapsulated nanoparticles for the inhibition and disruption of Porphyromonas gingivalis–Streptococcus gordonii biofilms." Journal of Nanobiotechnology 16, no. 1 (2018): 69. https://link.springer.com/article/10.1186/s12951-018-0396-4

“Abstract: Background: Porphyromonas gingivalis adherence to oral streptococci is a key point in the pathogenesis of periodontal diseases (Honda in Cell Host Microbe 10:423–425, 2011). Previous work in our groups has shown that a region of the streptococcal antigen denoted BAR (SspB Adherence Region) inhibits P. gingivalis/S. gordonii interaction and biofilm formation both in vitro and in a mouse model of periodontitis (Daep et al. in Infect Immun 74:5756–5762, 2006; Daep et al. in Infect immun 76:3273–3280, 2008; Daep et al. in Infect Immun 79:67–74, 2011). However, high localized concentration and prolonged exposure are needed for BAR to be an effective therapeutic in the oral cavity. Methods: To address these challenges, we fabricated poly(lactic-co-glycolic acid) (PLGA) and methoxy-polyethylene glycol PLGA (mPEG-PLGA) nanoparticles (NPs) that encapsulate BAR peptide, and assessed the potency of BAR-encapsulated NPs to inhibit and disrupt in vitro two-species biofilms. In addition, the kinetics of BAR-encapsulated NPs were compared after different durations of exposure in a two-species biofilm model, against previously evaluated BAR-modified NPs and free BAR. Results: BAR-encapsulated PLGA and mPEG-PLGA NPs potently inhibited biofilm formation (IC50 = 0.7 μM) and also disrupted established biofilms (IC50 = 1.3 μM) in a dose-dependent manner. In addition, BAR released during the first 2 h of administration potently inhibits biofilm formation, while a longer duration of 3 h is required to disrupt pre-existing biofilms. Conclusions These results suggest that BAR-encapsulated NPs provide a potent platform to inhibit (prevent) and disrupt (treat) P. gingivalis/S. gordonii biofilms, relative to free BAR. Keywords Polymer nanoparticle Poly(lactic-co-glycolic acid) Peptide delivery Drug delivery Porphyromonas gingivalis Streptococcus gordonii Periodontal disease Oral biofilm”

PLCL and PLGA-NH2 from PolySciTech used in development of cartilage repair tissue scaffold

Cartilage heals poorly as it is poorly vascularized, grows slowly, and has critical mechanical properties. Cartilage is commonly damaged by arthritic disease and trauma. Recently, researchers from the University of Maryland and National Institute of Standards and Technology used PLCL (AP179) and PLGA-NH2 (AI125) from PolySciTech (www.polyscitech.com) to design a 3D printed scaffold for repairing cartilage. This technology holds promise for improved repair and healing of joint tissues. Read more: Guo, Ting, Maeesha Noshin, Hannah B. Baker, Evin Taskoy, Sean J. Meredith, Qinggong Tang, Julia P. Ringel et al. "3D Printed Biofunctionalized Scaffolds for Microfracture Repair of Cartilage Defects." Biomaterials (2018). https://www.sciencedirect.com/science/article/pii/S0142961218306598

“Abstract: While articular cartilage defects affect millions of people worldwide from adolescents to adults, the repair articular cartilage defects still remains challenging due to the limited endogenous regeneration of the tissue and poor integration with implantations. In this study, we developed a 3D-printed scaffold functionalized with aggrecan that supports the cellular fraction of bone marrow released from microfracture, a widely used clinical procedure, and demonstrated tremendous improvement of regenerated cartilage tissue quality and joint function in a lapine model. Optical coherence tomography (OCT) revealed doubled thickness of the regenerated cartilage tissue in the group treated with our aggrecan functionalized scaffold compared to standard microfracture treatment. H&E staining showed 366 ± 95 chondrocytes present in the unit area of cartilage layer with the support of bioactive scaffold, while conventional microfracture group showed only 112 ± 26 chondrocytes. The expression of type II collagen appeared almost 10 times higher with our approach compared to normal microfracture, indicating the potential to overcome the fibro-cartilage formation associated with current microfracture approach. The therapeutic effect was also evaluated at joint function level. The mobility was evaluated using a modified Basso, Beattie and Bresnahan (BBB) scale. While the defect control group showed no movement improvement over the course of study, all experimental groups showed a trend of increasing scores over time. The present work developed an effective method to regenerate critical articular defects by combining a 3D-printed therapeutic scaffold with the microfracture surgical procedure. This biofunctionalized acellular scaffold has great potential to be applied as a supplement for traditional microfracture to improve the quality of cartilage regeneration in a cost and labor effective way. Key Words: aggrecan scaffold extrusion 3D printing microfracture articular cartilage Poly(L-Lactide-co-ε-Caprolactone) custom fabrication”

Friday, September 14, 2018


Akina's website was down last night due to necessary repairs on our server. The website is back up and running now and we are business as usual. Thanks for your patience.

Monday, September 10, 2018

PEG-Folate from PolySciTech used in development of theranostic particle for breast cancer treatment

Theranostics refers to a method of treatment for cancer in which the applied therapy both treats and diagnosis the cancer. Typically, this relies on targeted nanoparticles which have specialized fluorescent properties in order to render cancer visible as well as deliver a therapeutic agent to the cancer cells to prevent their growth and proliferation. Recently, researchers at Wrocław University used Folate-PEG-NH2 (PolyVivo AE005) from PolySciTech (www.polyscitech.com) to develop theranostic nanoparticles against breast cancer. This research holds promise to provide for improved therapies against this difficult to treat and potentially fatal disease. Read more: Wawrzyńczyk, Dominika, Urszula Bazylińska, Łukasz Lamch, Julita Kulbacka, Anna Szewczyk, Artur Bednarkiewicz, Kazimiera Wilk, and Marek Samoć. "FRET Activated Processes in Smart Nanotheranostics Fabricated in a Sustainable Manner." ChemSusChem (2018). https://onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201801441

“Abstract: The multilayer nanocarriers loaded with optically activated payloads are gaining increasing attention, due to their anticipated crucial role for providing new mechanisms of energy transfers in the health-oriented applications, as well as for energy storage and environment protection. The combination of careful selection of optical components for efficient Förster Resonance Energy Transfer, and surface engineering of the nanocarriers, allowed us to synthesize and characterize novel theranostic nanosystems for diagnosis and therapy of deep-seated tumors. The cargo, constrained within the oil core of the nanocapsules, composed of NaYF4:Tm+3,Yb+3 up-converting nanoparticles together with a second-generation porphyrin-based photosensitizing agent – Verteporfin, assured requisite diagnostic and therapeutic functions under near-infrared laser excitation. The outer polyaminoacid shell of the nanocapsules was functionalized with a ligand − poly(L-glutamic acid) functionalized by PEG-ylated folic acid − to ensure both “stealth” effect and active targeting towards human breast cancer cells. The preparation criteria of all nanocarriers building blocks meet the requirements for sustainable and green chemistry practices. The multifunctionality of the proposed nanocarriers is a consequence of both the surface functionalized organic exterior part, that was accessible for selective accumulation in cancer cells, and the hydrophobic optically active interior, which shows phototoxicity upon irradiation within the first biological window.”

Wednesday, September 5, 2018

PLGA from PolySciTech used in development of magnetic nanoparticles for brain cancer therapy

Have you ever pushed a magnet on one side of a table around using another magnet from beneath the table? If you have, it is unlikely you considered this as an option for treatment of brain cancer, however this is a technique which is being applied for crossing the notoriously difficult blood-brain-barrier. One of the insidious features of brain cancer is that the disease primarily occupies the ‘brain’ side of the blood-brain-barrier. Due to the limited uptake of medicines in the blood-stream into the brain, it is very difficult to administer therapeutics to brain cancer in patients. Recently, researchers at Iran University of Medical Sciences and University of Tehran (Iran) utilized PLGA (AP040) from PolySciTech (www.polyscitech.com) to create nano-graphene-oxide loaded nanoparticles with magnetic functionality. By carefully controlling magnetic fields, they were able to improve the particle capacity to deliver medicine across the blood-brain-barrier. This research holds promise for improved therapy for glioblastoma and other brain-cancer forms. Read more: Shirvalilou, Sakine, Samideh Khoei, Sepideh Khoee, Nida Jamali Raoufi, Mohammad Reza Karimi, and Ali Shakeri-Zadeh. "Development of a magnetic nano-graphene oxide Carrier for improved glioma-targeted drug delivery and imaging: In vitro and in vivo evaluations." Chemico-Biological Interactions (2018). https://www.sciencedirect.com/science/article/pii/S0009279718301601

“Abstract: To overcome the obstacles inflicted by the BBB in Glioblastoma multiforme (GBM) we investigated the use of Multifunctional nanoparticles that designed with a Nano-graphene oxide (NGO) sheet functionalized with magnetic poly (lactic-co-glycolic acid) (PLGA) and was used for glioma targeting delivery of radiosensitizing 5-iodo-2-deoxyuridine (IUdR). In vitro biocompatibility of nanocomposite has been studied by the MTT assay. In vivo efficacy of magnetic targeting on the amount and selectivity of magnetic nanoparticles accumulation in glioma-bearing rats under an external magnetic field (EMF) density of 0.5 T was easily monitored with MRI. IUdR-loaded magnetic NGO/PLGA with a diameter of 71.8 nm, a zeta potential of −33.07 ± 0.07 mV, and a drug loading content of 3.04 ± 0.46% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 15.98 emu/g. Furthermore, Prussian blue staining showed effective magnetic targeting, leading to remarkably improved tumor inhibitory efficiency of IUdR. The tumor volume of rats after treatment with IUdR/NGO/SPION/PLGA + MF was decreased significantly compared to the rats treated with buffer saline, IUdR and SPION/IUdR/NGO/PLGA. Most importantly, our data demonstrate that IUdR/NGO/SPION/PLGA at the present magnetic field prolongs the median survival time of animals bearing gliomas (38 days, p < 0.01). Nanoparticles also had high thermal sensitivities under the alternating magnetic field. In conclusion, we developed magnetic IUdR/NGO/PLGA, which not only achieved to high accumulation at the targeted tumor site by magnetic targeting but also indicated significantly enhanced therapeutic efficiency and toxicity for glioma both in vitro and in vivo. This innovation increases the possibility of improving clinical efficiency of IUdR as a radiosensitizer, or lowering the total drug dose to decrease systemic toxicity. Graphical abstract: Schematic illustration of magnetic drug delivery, verified by staining and use as an MRI contrast agent with IUdR/GO/SPION/PLGA and MF. Highlights: IUdR-loaded magnetic NGO + MF indicated the strongest anticancer effects in rat gliomas. Magnetic NGO induces thermosensitising effects in alternative magnetic field. Magnetic NGO under external magnetic field could overcome the BBB. Magnetic NGO could enhance the MRI sensitivity. Magnetic NGO modified with PLGA showed sustained release of IUdR. Keywords: Superparamagnetic iron oxide Glioma Magnetic targeting 5-Iodo-2′-deoxyuridine Nano-graphene oxide”

Monday, August 27, 2018

You’re invited to the Biotech, Pharma, Cancer, Research (BPCR) Scientific Networking Meeting this Wednesday (8/29) at KPTC.

The first annual BPCR even will be held in the Kurz Purdue Technology Center from 9 AM to 4 PM as an opportunity to get out there, network, learn about companies in the area as well as meet with potential collaborators, customers, and investors. Event speakers include Anton Iliuk (Tymora), Rob Hill (Hatch 51), Kelvin Okamoto (Gen3Bio), Cedric D’Hue (D’Hue Law), Kyle Lutes (Delmar), Laura Downey (Concordance), Pete Kissinger (BASI), Ardian Wibowo (Helix) Joanne Zhane (Phytoption), Bill Ooms (BSS), and John Garner (Akina). The exhibit hall features 16 different companies including LyoHUB, Akanocure, PGC, Triclinic labs, BI, Purdue OTC, Zeblock, Miftek, and LSAI laboratories as well as several others. The event is free of charge and open to the public. See more at www.BPCRconference.com. We look forward to seeing you there.

Monday, August 20, 2018

PEG-PLGA from PolySciTech used in research on PEGylated long-circulating nanoparticles

One of the mechanisms for loss of nanoparticles from the blood-stream is removal by macrophages. This process is particularly pronounced in the liver, where particles are up-taken as part of hepatic clearance of ‘non-self’ components from the blood-stream. One means of preventing macrophage uptake is the addition of a pegylated shell to the outside of the nanoparticle as PEG reduces non-specific protein adsorption. Recently, researchers at Drexel University utilized mPEG-PLGA (PolyVivo AK037) from PolySciTech (www.polyscitech.com) to generate PEGylated nanoparticles and tested the particles under a variety of conditions to obtain a better understanding of how these particles can be modified to prevent clearance from the blood-stream. This research holds promise for the development of improved long-circulating nanoparticle drug-delivery systems. Read more: Zhou, Hao, Zhiyuan Fan, Peter Y. Li, Junjie Deng, Dimitrios C. Arhontoulis, Christopher Y. Li, Wilbur B. Bowne, and Hao Cheng. "Dense and Dynamic Polyethylene Glycol Shells Cloak Nanoparticles from Uptake by Liver Endothelial Cells for Long Blood Circulation." ACS nano (2018). https://pubs.acs.org/doi/abs/10.1021/acsnano.8b04947

“Research into long-circulating nanoparticles has in the past focused on reducing their clearance by macrophages. By engineering a hierarchical polyethylene glycol (PEG) structure on nanoparticle surfaces, we revealed an alternative mechanism to enhance nanoparticle blood circulation. The conjugation of a second PEG layer at a density close to, but lower than the mushroom-to-brush transition regime on conventional PEGylated nanoparticles dramatically prolongs their blood circulation via reduced nanoparticle uptake by non-Kupffer cells in the liver, especially liver sinusoidal endothelial cells (LSECs). Our study also disclosed that the dynamic outer PEG layer reduces protein binding affinity to nanoparticles, although not the total number of adsorbed proteins. These effects of the outer PEG layer diminishes in the higher density regime. Therefore, our results suggest that the dynamic topographical structure of nanoparticles is an important factor in governing their fate in vivo. Taken together, this study advances our understanding of nanoparticle blood circulation and provides a facile approach for generating long circulating nanoparticles.”

BPCR conference (August 29, 2018 9AM - 4PM: Kurz Purdue Technology Center, West Lafayette, IN) is a free, 1-day scientific-networking conference hosted by Akina, Inc. See more BPCRconference.com.