Wednesday, May 13, 2020

PLGA-PEG-NH2 from PolySciTech used in development of photodynamic/x-ray therapy against colorectal cancer



Researchers at University of New South Wales, The University of Sydney, and Macquarie University (Australia) used PLGA-PEG-NH2 (AI058) from PolySciTech (www.polyscitech.com) to create photosentizing nanoparticles to apply in conjunction with X-ray therapy to treat cancer cells. This research holds promise to provide for improved cancer therapies. Read more: Deng, Wei, Kelly J. McKelvey, Anna Guller, Alexey Fayzullin, Jared M. Campbell, Sandhya Clement, Abbas Habibalahi et al. "Application of Mitochondrially Targeted Nanoconstructs to Neoadjuvant X-ray-Induced Photodynamic Therapy for Rectal Cancer." ACS Central Science (2020). https://pubs.acs.org/doi/abs/10.1021/acscentsci.9b01121

“In this work, we brought together two existing clinical techniques used in cancer treatment—X-ray radiation and photodynamic therapy (PDT), whose combination termed X-PDT uniquely allows PDT to be therapeutically effective in deep tissue. To this end, we developed mitochondrially targeted biodegradable polymer poly(lactic-co-glycolic acid) nanocarriers incorporating a photosensitizer verteporfin, ultrasmall (2–5 nm) gold nanoparticles as radiation enhancers, and triphenylphosphonium acting as the mitochondrial targeting moiety. The average size of the nanocarriers was about 160 nm. Upon X-ray radiation our nanocarriers generated cytotoxic amounts of singlet oxygen within the mitochondria, triggering the loss of membrane potential and mitochondria-related apoptosis of cancer cells. Our X-PDT strategy effectively controlled tumor growth with only a fraction of radiotherapy dose (4 Gy) and improved the survival rate of a mouse model bearing colorectal cancer cells. In vivo data indicate that our X-PDT treatment is cytoreductive, antiproliferative, and profibrotic. The nanocarriers induce radiosensitization effectively, which makes it possible to amplify the effects of radiation. A radiation dose of 4 Gy combined with our nanocarriers allows equivalent control of tumor growth as 12 Gy of radiation, but with greatly reduced radiation side effects (significant weight loss and resultant death).”

No comments: