During the normal ring-opening polymerization of PLGA, the glycolide monomer typically reacts faster and more readily than the lactide monomer leading to non-random distribution of monomers along the polymer chain. This process competes with transesterification and other reactive processes in polymer manufacturing which act to improve randomness along the chain. Recently, researchers at Purdue University developed a novel method to make small quantities of mPEG-PLGA with precisely controlled monomer distribution. They used mPEG-PLGA (Cat# AK010) from PolySciTech (www.polyscitech.com) (manufactured using conventional bulk-melt ring-opening polymerization) to compare the various batches they had made. In addition to traditional PLGA offerings, Akina has recently begun adding products of PLGA alternating LA:GA based on 3-methylglycolide monomer (e.g. cat# AP279 – AP281). This research holds promise to provide a more mechanistic understanding of PLGA sequencing effect on the polymer properties. Read more: Yoo, Jin, Dhushyanth Viswanath, and You-Yeon Won. "Strategy for Synthesis of Statistically Sequence-Controlled Uniform PLGA and Effects of Sequence Distribution on Interaction and Drug Release Properties." ACS Macro Letters 10 (2021): 1510-1516. https://pubs.acs.org/doi/abs/10.1021/acsmacrolett.1c00637
“Extensive studies have been conducted to elucidate the effects of such parameters as molecular weight, polydispersity, and composition on the controlled release properties of poly(d,l-lactic-co-glycolic acid) (PLGA). However, studies dealing with the effect of monomer sequence distribution have been sparse mainly because of the difficulty of precisely controlling the monomer sequence in PLGA. Herein, we present a semibatch copolymerization strategy that enables the production of statistically sequence-controlled “uniform PLGA” polymers through control of the rate of comonomer addition. Using this method, a series of PEG–PLGA samples having a comparable molecular weight and composition but different sequence distributions (uniform vs gradient) were prepared. The properties of these materials (PEG crystallization/melting, hygroscopicity, aqueous sol–gel transition, drug release kinetics) were found to significantly vary, demonstrating that sequence control only at the statistical level still significantly influences the properties of PLGA. Most notably, uniform PLGA exhibited the more sustained drug release behavior compared to gradient PLGA.”
No comments:
Post a Comment