Wednesday, May 18, 2022

PLCL from PolySciTech used in development of sprayable tissue adhesive for surgical applications

 

After surgery it is not uncommon for various internal tissues to heal together inappropriately, i.e. certain layers of tissue will heal to one another rather than as discrete layers. This problem can lead to adhesions, fibrous bridges that connect tissue surfaces together and is usually affiliated with an inflammatory response post-surgery. These adhesions can lead to severe pain as well as bowel obstruction and infertility, depending on their location. Recently, researchers at University of Maryland, Massachusetts Institute of Technology, and Children’s National Medical Center utilized various PLCL polymers (cat# AP212, AP178, AP179, and AP151) from PolySciTech (www.polyscitech.com) to create a spray-on layer of biodegradable polymer that reduces the formation of these adhesions between tissues. This research holds promise to reduce this common post-surgical complication. Read more: Erdi, Metecan, Selim Rozyyev, Manogna Balabhadrapatruni, Michele S. Saruwatari, John L. Daristotle, Omar B. Ayyub, Anthony D. Sandler, and Peter Kofinas. "Sprayable Tissue Adhesive with Biodegradation Tuned for Prevention of Post‐Operative Abdominal Adhesions." Bioengineering & Translational Medicine: e10335. https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/btm2.10335

“Abstract: Adhesions are dense, fibrous bridges that adjoin tissue surfaces due to uncontrolled inflammation following post-operative mesothelial injury. A widely used adhesion barrier material in Seprafilm often fails to prevent transverse scar tissue deposition because of its poor mechanical properties, rapid degradation profile, and difficulty in precise application. Solution blow spinning (SBS), a polymer fiber deposition technique, allows for the placement of in-situ tissue-conforming and tissue-adherent scaffolds with exceptional mechanical properties. While biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA) have desirable strength, they exhibit bulk biodegradation rates and inflammatory profiles that limit their use as adhesion barriers and result in poor tissue adhesion. Here, viscoelastic poly(lactide-co-caprolactone) (PLCL) is used for its pertinent biodegradation mechanism. Because it degrades via surface erosion, spray deposited PLCL fibers can dissolve new connections formed by inflamed tissue, allowing them to function as an effective, durable, and easy to apply adhesion barrier. Degradation kinetics are tuned to match adhesion formation through design of PLCL blends comprised of highly adhesive “low” molecular weight (LMW) constituents in a mechanically robust “high” molecular weight (HMW) matrix. In-vitro studies demonstrate that blending LMW PLCL (30% w/v) with HMW PLCL (70% w/v) yields an anti-fibrotic yet tissue-adhesive polymer sealant with a 14-day erosion rate countering adhesion formation. PLCL blends additionally exhibit improved wet tissue adhesion strength (~10 kPa) over a 14-day period versus previously explored biodegradable polymer compositions, such as PLGA. In a mouse cecal ligation model, select PLCL blends significantly reduce abdominal adhesions severity versus no treatment and Seprafilm treated controls.”

No comments: