Wednesday, November 1, 2023

PLGA from PolySciTech used in development of virus-like particles for vaccine application

 

Vaccines have the potential to prevent serious infections especially those from viral sources. For rapid deployment it is ideal to have a vaccine which does not require cold-storage and can be shelf-stable for reasonable time of usage. Researchers at University of California San Diego PLGA (cat# AP041) from PolySciTech division of Akina, Inc. (www.polyscitech.com) to create nanoparticles which deliver HPV-virus like particles for improved immune-system response against a shelf-stable vaccine. This research holds promise to improve vaccine development in the future. Read more: Puente, Armando A., Oscar A. Ortega-Rivera, David M. Wirth, Jonathan K. Pokorski, and Nicole F. Steinmetz. "Melt Processing Virus-Like Particle-Based Vaccine Candidates into Biodegradable Polymer Implants." In Therapeutic Proteins: Methods and Protocols, pp. 221-245. New York, NY: Springer US, 2023. https://link.springer.com/protocol/10.1007/978-1-0716-3469-1_16

“Abstract: Melt processing is an emerging production method to efficiently encapsulate proteins into polymeric devices for sustained release. In the context of vaccines, melt processing is well-suited to develop vaccine delivery devices that are stable outside the cold chain and can generate protective immunity from a single dose. We have demonstrated the compatibility of bacteriophage Qβ virus-like particles (VLPs) with hot-melt extrusion (HME) and have leveraged this technology to develop a single-dose vaccine candidate for vaccination against human papillomavirus (HPV). Here, we detail the methods for chemically conjugating an HPV peptide epitope from the L2 minor capsid protein to Qβ VLPs to generate HPV-Qβ particles. We outline techniques used to characterize HPV-Qβ particles, and we elaborate on the process to encapsulate HPV-Qβ into biodegradable poly(lactic-co-glycolic acid) (PLGA) implants and discuss methods for the materials characterization of the HPV-Qβ/polymer melts. The methods described could be adapted to other disease targets, i.e., by conjugation of a different peptide epitope, or transferred to other VLP systems suited for conjugation, immune response, or stability during processing. Such VLPs are ideally suited for use in HME, a mature, scalable, continuous, and solvent-free process which can be adapted to mold devices, therefore allowing the processing of the melts into various geometries, such as subcutaneous implants, or self-administrable microneedle patches. Key words: Vaccines, Melt processing, Sustained release, Single-dose vaccines, Polymer implants, Virus-like particles (VLP), Human papillomavirus (HPV), Bacteriophage Qβ, L2 capsid protein”

BPR (Biotech Pharma Research) Conference April 10, 2024 West Lafayette, Indiana http://bprconference.com/

Akina is hiring, see employment opportunities here: http://akinainc.com/employment.php

No comments: