Combinations of metal compounds with polymers can enable unique drug-delivery options. Researchers at China Three Gorges University used PCL (AP257) from PolySciTech Division of Akina, Inc. (www.polyscitech.com) to create mixed nanoparticles containing selenium and Riboflavin as a model drug delivery system. This research holds promise to provide for a wide array of targeted delivery applications. Read more: Zhu, Lixian, Yanhua Wang, Luping Rao, and Xin Yu. "Se-incorporated polycaprolactone spherical polyhedron enhanced vitamin B2 loading and prolonged release for potential application in proliferative skin disorders." Colloids and Surfaces B: Biointerfaces 245 (2025): 114295. https://www.sciencedirect.com/science/article/pii/S092777652400554X
“Highlights: The introduction of Se into PCL@VitB2 spherical polyhedrons reduces their particle size and crystallinity. Se-PCL spherical polyhedrons perform higher loading efficiency for Vitamin B2 than pure PCL spherical polyhedrons. Se-PCL@VitB2 spherical polyhedrons exhibit slowly prolonged Vitamin B2 release in physical buffers. Se-PCL@VitB2 spherical polyhedrons present strong inhibitory effect on the growth of epidermal HaCat cells, but are compatible to BMSC cells. Abstract: Development of novel drug vehicles for vitamin B2 (VitB2) delivery is very important for designing controllable release system to improve epidermal growth and bone metabolism. In this work, selenium (Se)-incorporated polycaprolactone (PCL) spherical polyhedrons are successfully synthesized via a single emulsion solvent evaporation method which is utilized to load VitB2 to fabricate cell-responsive Se-PCL@VitB2 delivery systems. Their physicochemical properties are characterized by DLS, SEM, XRD, FTIR, and TGA-DSC. The release kinetics of VitB2 or Se from the samples are investigated in PBS solution (pH = 2.0, 5.0, 7.4, 8.0 and 12.0). The cytocompatibilities are also evaluated with normal BMSC and epidermal HaCat cells. Results exhibit that Se-PCL@VitB2 particles presents spherical polyhedral morphology (approximately (3.25 ± 0.46) μm), negative surface charge (-(54.03 ± 2.94) mV), reduced crystallinity and good degradability. Stability experiments imply that both VitB2 and Se might be uniformly dispersed in PCL matrix. And the incorporation of Se facilely promotes the loading of VitB2. The encapsulation efficiency and loading capacity are (98.42 ± 1.06)% and (76.25 ± 1.27) for Se-PCL@VitB2 sample. Importantly, it exhibits more prolonged release of both VitB2 and Se in neutral PBS solution (pH = 7.4) than other pH conditions. Presumably, the electrostatic interaction between Se, VitB2 and PCL contribute to its release mode. Cell experiments show that Se-PCL@VitB2 presents strong cytotoxicity to HaCat cells mainly due to the cytotoxic effect of Se anions and PCL degradation products. However, it exhibits weak inhibitory effect on BMSC cells. These note that the synthesized Se-PCL@VitB2 particles can be promising drug vehicles for potential application in epidermal proliferative disorders.”
PCL (Cat# AP257): https://akinainc.com/polyscitech/products/polyvivo/index.php?highlight=AP257#h
NEW: Corbion Purasorb® Polymers: https://akinainc.com/polyscitech/products/purasorb/
NEW: Ashland-TM products: https://akinainc.com/polyscitech/products/ashland/
No comments:
Post a Comment