Monday, November 10, 2025

PLGA from PolySciTech used in development of timed release patch for treatment of heart disease

 

Myocardial infarction (MI) remains one of the most pressing global health problems, leaving millions of patients with long-term cardiac dysfunction despite advances in acute surgical care. Researchers at Massachusetts Institute of Technology used multiple PLGAs from PolySciTech Division of Akina, Inc. (www.polyscitech.com) to develop a drug delivery system to release drugs into the heart tissue in a timed sequence. This research holds promise to improve treatment of heart disease. Read more: Erika Yan Wang, Elizabeth A. Calle, Binbin Ying, Behnaz Eshaghi, Linzixuan Zhang, Xin Yang, Stacey Qiaohui Lin, Jooli Han, Alanna G. Backx, Yuting Huang, Sevinj Mursalova, Chuhan Joyce Qi, Yi Liu, Robert Langer, Ana Jaklenec "TIMED: Temporal intervention with microparticle encapsulation and delivery—A programmed release system for post-myocardial infarction therapy." Cell Biomaterials (2025). https://www.cell.com/cell-biomaterials/abstract/S3050-5623(25)00240-5

“Myocardial infarction (MI) is a major global health challenge. Surgical interventions address the acute phase but often fail to support long-term recovery. Sequential post-operative drug delivery offers promise but is constrained by release methods. Here, we developed TIMED (temporal intervention with microparticle encapsulation and delivery), a polymeric device enabling programmed sequential release through spatially patterned microparticles in a tough hydrogel matrix. TIMED demonstrated excellent mechanical performance and biocompatibility for long-term implantation and retained strong stability after storage. A sequential dosing regimen aligned with the innate post-MI response was first validated in hiPSC-derived cardiac tissues, where it enhanced cell viability and vascularization while reducing collagen deposition. In vivo, delivery via the TIMED improved survival, reduced injury markers and infarct size, and enhanced cardiac output, outperforming equivalent i.v. dosing. This work establishes a first-of-its-kind cardiac implantable polymeric platform with modular sequential release and provides a framework for programmed multi-dosing across diverse applications.”

Multiple PLGA (https://akinainc.com/polyscitech/products/polyvivo/polyesters.php)

Benchtop to Bedside with MidWest GMP https://www.akinainc.com/midwestgmp/

Corbion Purasorb® Polymers: https://akinainc.com/polyscitech/products/purasorb/

Ashland-TM Polymer Products: https://akinainc.com/polyscitech/products/ashland/

BPR Akina's Free Scientific Conference (West Lafayette, 4/29/26: (https://akinainc.com/bprconference/)

mPEG-PLGA from Akina utilized in research on nanoparticle-protein interactions

 



When nanoparticle drug delivery system enters the body it gathers a cluster of proteins which naturally cluster around its surface forming a protein corona. Researchers at University of Napoli Federico II used mPEG-PLGA (Cat# AK090) from PolySciTech Division of Akina, Inc. (www.polyscitech.com) to investigate the interactions between proteins and nanoparticles. This research helps elucidate the behavior of nanoparticle delivery systems. Read more: Spinelli, Lucio, Pasquale D’Anna, Elva Morretta, Chiara Cassiano, Virgilio Piccolo, Martina De Rosa, Rebecca Amico et al. "PEGylation-Driven Remodeling of the Protein Corona on PLGA Nanoparticles: Implications for Macrophage Recognition." Biomacromolecules (2025). https://pubs.acs.org/doi/abs/10.1021/acs.biomac.5c01369

“The formation of a Protein Corona (PC) on the surface of nanoparticles (NPs) is a critical event that shapes their biological identity and governs interactions with the immune system. In this study, we investigated the composition of the PC formed on mixtures of PLGA and PEG–PLGA NPs, aiming to elucidate the link between NPsurface chemistry, proteomic fingerprint in cell culture medium, and uptake by bone marrow-derived macrophages (BMDMs). NPs showed different sizes but comparable actual PEG amount exposed on the surface, which is significantly lower than the theoretical values. The PC, isolated using a standardized microfiltration protocol, revealed distinct patterns of protein adsorption as a function of the PEG density. Uptake studies in BMDMs revealed a strong inverse relationship between PEG surface density, PC composition, and macrophage internalization, supporting the hypothesis that the opsonin/dysopsonin balance is more critical than a single protein interaction. In conclusion, this work demonstrates that the PEG surface density is not the only determinant of PC composition. These findings underscore the importance of rigorous surface characterization and PC profiling to predict and tune nanocarrier performance in vivo.”

PLGA-PEG (https://akinainc.com/polyscitech/products/polyvivo/index.php?highlight=AK090#h)

Benchtop to Bedside with MidWest GMP https://www.akinainc.com/midwestgmp/

Corbion Purasorb® Polymers: https://akinainc.com/polyscitech/products/purasorb/

Ashland-TM Polymer Products: https://akinainc.com/polyscitech/products/ashland/

BPR Akina's Free Scientific Conference (West Lafayette, 4/29/26: (https://akinainc.com/bprconference/)

Monday, October 20, 2025

Fluorescent PLGA-FKR648 used in development of urease powered oral dosage nano-therapy.

 


In order for a swallowed tablet or pill to work, the relevant medicine must cross the intestinal lumen into the bloodstream. Researchers at Universidade do Porto (University of Portugal), Harvard Medical School, and Massachusetts Institute of Technology used Fluorescent PLGA-FKR648 (cat# AV015) as part of a novel, urease-powered motile nanoparticle for oral dosage. This research holds promise to provide for delivery of poorly-absorbed drugs. Read more: Almeida, Helena, Cecília Cristelo, Juliana Viegas, Giovanni Traverso, Bruno Sarmento, and José das Neves. "Gastrointestinal distribution of engineered biodegradable urease-powered nanomotors." Acta Biomaterialia (2025). https://www.sciencedirect.com/science/article/pii/S1742706125007287

“Abstract: The oral route is the most patient-friendly option for drug administration, yet biological barriers often limit its effectiveness. Chief among these is the mucus layer along the gastrointestinal (GI) tract, which restricts the transport of drugs and carriers. Strategies such as mucolytics, mucus-inert materials, and anisotropic nanosystems have been employed to enhance penetration. We developed urease-powered poly(lactic-co-glycolic acid) (PLGA) nanomotors for drug delivery, featuring either random (isotropic) or spatially localized (anisotropic, Janus-like) urease surface functionalization. Anisotropic nanomotors were prepared by immobilizing PLGA nanoparticles (NPs) at the oil-water interface of Pickering emulsions, followed by urease conjugation via carbodiimide chemistry. Cryogenic scanning electron microscopy confirmed NPs interfacial localization, and immunoelectron microscopy unveiled urease spatial distribution. The resulting nanomotors catalyzed the conversion of urea to ammonia and carbon dioxide, enabling enhanced diffusion in urea-containing environments. Isotropic NPs showed a two-fold higher enzymatic conversion rate compared to anisotropic ones, attributed to higher enzyme availability, with negligible levels observed for passive PLGA NPs. All NPs were coated with poloxamer 407 (P407) for stabilization, yielding particles under 200 nm with low polydispersity and near-neutral charge. The P407 coating slightly reduced nanomotor mobility in fluids at the single-particle level, while it seems to have improved in vitro cell uptake in the presence of urea. In vivo studies in rats revealed that urease-functionalized nanomotors transited the GI tract and appeared to show enhanced localization at the epithelial surface, when compared to passive counterparts and regardless of urease distribution configuration. These findings highlight the potential of both isotropic and anisotropic urease-powered PLGA nanomotors to overcome GI barriers and serve as drug delivery platforms. New designs for urease-powered polymeric nanoparticles (nanomotors) are proposed in this work to circumvent hurdles introduced by mucosae. Nanomotors featured either random or spatially oriented distribution of urease at their surface. The latter was achieved by means of Pickering emulsion and partial surface modification. Using these approaches, we demonstrated that both nanomotors convert urea into carbon dioxide and ammonia, resulting in enhanced diffusion in aqueous media. Nanomotors were safe in vitro, and capable of providing extensive distribution throughout the gastrointestinal tract following oral administration to rats, accumulating in the vicinity of the epithelium. The main findings suggest that such bioresorbable nanosystems have the potential to tackle important biological barriers and presumably be used as oral drug delivery vehicles.”

PLGA-FKR648 (https://akinainc.com/polyscitech/products/polyvivo/index.php?highlight=AV015#h)

Benchtop to Bedside with MidWest GMP https://www.akinainc.com/midwestgmp/

Corbion Purasorb® Polymers: https://akinainc.com/polyscitech/products/purasorb/

Ashland-TM Polymer Products: https://akinainc.com/polyscitech/products/ashland/

BPR Akina's Free Scientific Conference (West Lafayette, 4/29/26: (https://akinainc.com/bprconference/)

PLGA-Rhodamine from PolySciTech used in development of novel immunotherapy for cancer

 


Immunotherapy is a promising field where the bodies own defense system is used to fight cancer. Researchers at The University of Oklahoma used PLGA-Rhodamine B (Cat# AV011) from Akina from PolySciTech Division of Akina, Inc. (www.polyscitech.com) to develop a novel immunotherapy platform. This research holds promise to improve treatment against cancer. Read more: Ajeeb, Rana, Chloé Catelain, Harsh A. Joshi, Danuta Radyna, and John R. Clegg. "Recombinant Cytokine Bioconjugates with Degradable Nanogel Substrates for Macrophage Immunotherapy." Acta Biomaterialia (2025). https://www.sciencedirect.com/science/article/pii/S1742706125004015

“Cytokines are potent endogenous modulators of innate immunity, making them key mediators of macrophage plasticity for immunotherapy. However, the clinical translation of recombinant cytokines as therapeutics is limited by systemic side effects, caused by cytokines’ pleiotropy, potency, and non-specific biodistribution following systemic dosing. We developed a cytokine delivery platform utilizing poly(acrylamide-co-methacrylic acid) synthetic nanogels as a biodegradable substrate for conjugated recombinant cytokines (i.e., IFNγ, IL4, or IL10), called Synthetic Nano-CytoKines or “SyNK”. We evaluated the phenotypic response of macrophages to these conjugates following prophylactic or therapeutic dosing, in the presence or absence of soluble inflammatory signals. Our data confirmed that SyNK is highly cytocompatible with murine macrophages, preserves the activity of conjugated recombinant cytokines to both macrophages and dendritic cells, and minimizes systemic exposure to freely soluble recombinant cytokines. Intrinsic activity of the nanomaterial was modest, acting in combination with the conjugated cytokine, and resulted in unique phenotypes with IL4-SyNK and IL10-SyNK stimulation that could potentially be leveraged for therapeutic applications. We further demonstrated that RAW264.7 macrophages adopt distinct alternative phenotypes upon IL4 or IL10 stimulation in different classically polarizing microenvironments, as measured by spectral flow cytometry and secretome multiplex, which are similar for soluble recombinant cytokine and the corresponding SyNK. These findings offer a potential mechanism through which IL4 or IL10-SyNK can redirect the classically activated macrophage antigen presentation, T cell co-stimulation, or microenvironment regulatory functions for therapeutic purposes. Cytokines have been extensively investigated as immune therapies, but their clinical translation is limited by their systemic toxicity and frequent dosing regimens. Existing approaches have improved cytokine stability and local delivery but still face challenges in systemic administration and controlling immune response. We developed a cytokine delivery platform using biodegradable poly(acrylamide-co-methacrylic acid) nanogels to conjugate cytokines (e.g. IFNγ, IL4, or IL10) aimed at systemic macrophage immunotherapy. We show that our platform preserves cytokine activity and eliminates the release of free cytokine. We further explore, for the first time, how different stimuli in the macrophage environment influence their response to the cytokine bioconjugates. Our work provides thorough insights into macrophage plasticity and addresses key limitations of current strategies.”

PLGA-Rhodamine (https://akinainc.com/polyscitech/products/polyvivo/index.php?highlight=AV011#h)

Benchtop to Bedside with MidWest GMP https://www.akinainc.com/midwestgmp/

Corbion Purasorb® Polymers: https://akinainc.com/polyscitech/products/purasorb/

Ashland-TM Polymer Products: https://akinainc.com/polyscitech/products/ashland/

BPR Akina's Free Scientific Conference (West Lafayette, 4/29/26: (https://akinainc.com/bprconference/)

Thursday, October 2, 2025

Thermogelling PLGA-PEG-PLGA from PolySciTech used in development of cataract therapy.

 


Post-surgical cataracts can reduce vision in patients. Researchers at Rowan University used PLGA-PEG-PLGA (AK097) from Akina from PolySciTech Division of Akina, Inc. (www.polyscitech.com) to deliver doxorubicin as part of cataract treatment. This research holds promise to provide for improved blindness treatment. Read more: Vardar, Camila, Giavanna Trojan, and Mark E. Byrne. "Treating Post-Cataract Posterior Capsule Opacification: The Relationship Between Myofibroblast Concentration on Lens Capsule Wrinkling." Regenerative Engineering and Translational Medicine (2025): 1-12. https://link.springer.com/article/10.1007/s40883-025-00476-z

“The present study aimed to determine the relationship between the concentration of myofibroblasts on bovine lens capsules and loss of visual acuity due to monolayer coverage and wrinkling, in a model of an accelerated timeline of posterior capsular opacification (PCO). Bovine lens capsule explants were cultured on 12-well plates and treated with five different concentrations of myofibroblasts, while optical clarity was measured using UV-spectroscopy for a period of 4 days. Immunolocalization studies were carried out to confirm loss of transparency from wrinkling caused by myofibroblastic contractile forces. Novel, injectable, thermosensitive poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymer hydrogels were engineered for the sustained release of targeted, nucleic acid nanocarriers loaded with cytotoxic doxorubicin (G8:3DNA:Dox). Targeted depletion of myofibroblast precursors using these hydrogels was evaluated. Both 25 k and 40 k myofibroblasts/well delivered onto the lens capsule exhibited almost total loss of optical clarity, whereas 5 k and 10 k myofibroblasts/well still showed a significant decrease in transparency. Capsules that received 2 k myofibroblasts/well did not experience a significant reduction in transmittance. For the first time, the relationship between myofibroblast concentration, as a result of prolonged exposure to active transforming growth factor-β2 (TGF-β2) and pro-inflammatory conditions, and its effect on lens capsule transparency is shown. The findings of this study can be taken into consideration when designing sustained release devices to prevent the onset of post-surgical complications of cataract surgery.”

PLGA-PEG-PLGA (https://akinainc.com/polyscitech/products/polyvivo/index.php?highlight=AK097#h)

Benchtop to Bedside with MidWest GMP https://www.akinainc.com/midwestgmp/

Corbion Purasorb® Polymers: https://akinainc.com/polyscitech/products/purasorb/

Ashland-TM Polymer Products: https://akinainc.com/polyscitech/products/ashland/

BPR Akina's Free Scientific Conference (West Lafayette, 4/29/26: (https://akinainc.com/bprconference/)

PLGA from PolySciTech used in development of triggered nanoparticles for brain cancer treatment.

 


One route of treatment for brain cancer is to apply nanoparticles through the nose and to trigger them to deliver inside the brain tissue. Researchers at Nagoya City University used PLGA (AP018) from Akina from PolySciTech Division of Akina, Inc. (www.polyscitech.com). This research holds promise to provide drug delivery directly to the brain. Read more: Sato, Kazuki, Koki Ogawa, Sawaki Nabeshima, Susumu Suwabe, and Tetsuya Ozeki. "Fabrication and Application of Iron Oxide-Encapsulated PLGA Nanoparticles with Dual Responsiveness to Magnetic Fields and Light for Nose-to-Brain Drug Delivery." Journal of Drug Delivery Science and Technology (2025): 107535. https://www.sciencedirect.com/science/article/pii/S1773224725009384

“Nose-to-brain delivery has been widely investigated as a potential strategy for glioma therapy. However, the nasal epithelial barrier remains a major obstacle to drug transport from the nasal cavity to the brain, particularly for macromolecular agents such as peptides, nucleic acids, and nanoparticles. Therefore, strategies to enhance epithelial permeability are required. In this study, we developed a drug delivery system to improve nose-to-brain transport through transcranial magnetic field application, with the aim of contributing to glioma treatment. Iron oxide nanoparticles (IONPs), which possess both superparamagnetic and photothermal properties, were utilized to enhance brain penetration and to enable photothermal therapy (PTT). IONPs were encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles to form IONPs@PLGA, with an average size of approximately 200 nm. Transmission electron microscopy revealed that IONPs were located inside PLGA nanoparticles, and laser irradiation (660 nm) raised the temperature to 50 °C, suggesting that IONPs@PLGA generated sufficient heat to induce cancer cell death. Moreover, IONPs@PLGA were efficiently internalized by cells under a magnetic field, and laser irradiation induced strong cytotoxicity against C6 glioma cells. Notably, applying a magnetic field after intranasal administration increased brain accumulation by ∼2.5-fold, confirming enhanced delivery via magnetic targeting. In summary, we developed IONPs@PLGA, a dual magnetic- and light-responsive system, and demonstrated its potential to improve nose-to-brain delivery. Given their drug-loading capacity, IONPs@PLGA represent a promising platform for magnetically guided, non-invasive brain drug delivery.”

PLGA (https://akinainc.com/polyscitech/products/polyvivo/index.php?highlight=AP018#h)

Benchtop to Bedside with MidWest GMP https://www.akinainc.com/midwestgmp/

Corbion Purasorb® Polymers: https://akinainc.com/polyscitech/products/purasorb/

Ashland-TM Polymer Products: https://akinainc.com/polyscitech/products/ashland/

BPR Akina's Free Scientific Conference (West Lafayette, 4/29/26: (https://akinainc.com/bprconference/)

Monday, September 15, 2025

PLGA from PolySciTech used in development of hyaluronic-acid conjugated nanocarriers for colorectal cancer therapy

 


Colorectal cancer is the third most common cancer and it develops in the lower part of the large intestine. Researchers at Pusan National University used a series of PLGAs (AP037, AP040, AP082, and AP154) from Akina from PolySciTech Division of Akina, Inc. (www.polyscitech.com) to develop hyaluronic acid conjugated PLGA for colorectal cancer (CRC)-targeted nanoparticles. This research holds promise to treat this common and deadly disease. Read more: Lee, Juho, Dongmin Kwak, Hyunwoo Kim, Muneeb Ullah, Jihyun Kim, Muhammad Naeem, Seonghwan Hwang et al. "Elucidating a Tumor‐Selective Nanoparticle Delivery Mechanism at the Colorectal Lumen–Tumor Interface for Precise Local Cancer Therapy." Small 21, no. 9 (2025): 2409994. https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202409994

“Although various colorectal cancer (CRC)-targeted nanoparticles have been developed to selectively deliver anticancer agents to tumor tissues, severe off-target side effects still persist due to unwanted systemic nanoparticle distribution, limiting the therapeutic outcome. Here, by elucidating a tumor-selective nanoparticle delivery mechanism occurring at the colorectal lumen–tumor interface, an alternative CRC-targeted delivery route is proposed, which enables highly tumor-selective delivery without systemic distribution, through direct drug delivery from the outside of the body (colorectal lumen) to tumors in the colorectum. Owing to the presence of accessible tumor-specific receptors such as CD44 at the colorectal lumen–tumor interface, but not at the colorectal lumen–normal tissue interface, colorectal luminal surface (CLS)-targeting ligand-functionalized nanoparticles selectively accumulate in CRC tissues without systemic distribution, resulting in successful local CRC therapy. The findings suggest that CLS-targeted lumen-to-tumor delivery can be a suitable strategy for highly CRC-specific drug delivery for precise local CRC therapy.”

PLGAs (https://akinainc.com/polyscitech/products/polyvivo/polyesters.php)

Benchtop to Bedside with MidWest GMP https://www.akinainc.com/midwestgmp/

Corbion Purasorb® Polymers: https://akinainc.com/polyscitech/products/purasorb/

Ashland-TM Polymer Products: https://akinainc.com/polyscitech/products/ashland/

BPR Akina's Free Scientific Conference (West Lafayette, 4/29/26: (https://akinainc.com/bprconference/)