Blog dedicated to answering technical questions in an open format relating to PolySciTech (A division of Akina, Inc.) products.
Wednesday, August 1, 2018
PLGA from PolySciTech used in development of brain-cancer targeting liposome therapy
A common problem which afflicts all brain-treatment methodologies is the presence of the blood-brain-barrier, a system which prevents most medicines in the bloodstream from crossing over into the brain cavity. Overcoming this barrier is not a trivial task and necessary for treating ailments ranging from glioblastoma to Alzheimer’s disease. Recently, researchers from North Dakota State University utilized PLGA (PolyVivo cat# AP022) from PolySciTech (www.polyscitech.com) combined with chitosan to develop an in-vitro brain tumor model to test uptake by cancer cells of 5-FU loaded liposomes. This research holds promise to improve therapeutic options for brain cancer. Read more: Lakkadwala, Sushant, and Jagdish Singh. "Dual Functionalized 5-Fluorouracil Liposomes as Highly Efficient Nanomedicine for Glioblastoma Treatment as Assessed in an In Vitro Brain Tumor Model." Journal of Pharmaceutical Sciences (2018). https://www.sciencedirect.com/science/article/pii/S0022354918304556
“Abstract: Drug delivery to the brain has been a major challenge due to the presence of the blood brain barrier (BBB), which limits the uptake of most chemotherapeutics into brain. We developed a dual-functionalized liposomal delivery system, conjugating cell penetrating peptide penetratin to transferrin-liposomes (Tf-Pen-conjugated liposomes) to enhance the transport of an anticancer chemotherapeutic drug, 5-fluorouracil (5-FU), across the BBB into the tumor cells. The in vitro cellular uptake study showed that the dual-functionalized liposomes are capable of higher cellular uptake in glioblastoma (U87) and brain endothelial (bEnd.3) cells monolayer. In addition, dual-functionalized liposomes demonstrated significantly higher apoptosis in U87 cells. The liposomal nanoparticles showed excellent blood compatibility and in vitro cell viability, as studied by hemolysis and MTT assay, respectively. The 5-FU loaded dual-functionalized liposomes demonstrated higher transport across the brain endothelial barrier and delivered 5-FU to tumor cells inside PLGA-chitosan scaffold (an in vitro brain tumor model), resulting in significant tumor regression. Keywords: blood brain barrier liposomes nanomedicine biocompatibility cancer chemotherapy targeted drug delivery”
BPCR conference (August 29, 2018 9AM - 4PM: Kurz Purdue Technology Center, West Lafayette, IN) is a free, 1-day scientific-networking conference hosted by Akina, Inc. See more BPCRconference.com.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment