Thursday, February 13, 2020

PLA from PolySciTech used in development of imaging agent for evaluation of Transarterial chemoembolization for liver cancer treatment

Treatment of liver cancer often involves transcatheter embolization in which the artery that feeds the tumor area is sealed off to kill the cancer cells. Determining the success of the procedure requires being able to visualize if the region is correctly occluded or not which needs a suitable contrast/imaging agent. Recently, researchers from Southern University of Science and Technology, Henan University, Southern Medical University (China), and National University of Singapore used PLA (AP004) from PolySciTech to create fluorscent nanoparticles for visualizing the interior of decularilzed liver vascular structure. This research holds promise to improve the tools used to evaluate embolization procedures as part of treatment of liver cancer. Read more: Gao, Yanan, Zhihua Li, Yin Hong, Tingting Li, Xiaoyan Hu, Luyao Sun, Zhengchang Chen et al. "Decellularized liver as a translucent ex vivo model for vascular embolization evaluation." Biomaterials (2020): 119855. https://www.sciencedirect.com/science/article/pii/S0142961220301010

“Abstract: Transarterial chemoembolization (TACE) is the preferred treatment for patients with unresectable intermediate stage hepatocellular carcinoma, however currently the development of embolic agents for TACE lacks in vitro models that closely represent the sophisticated features of the organ and the vascular systems therein. In this study, we presented a new strategy using an ex vivo liver model to provide a translucent template for evaluating embolic agents of TACE. The ex vivo liver model was developed through decellularizion of rat liver organs with preserved liver-specific vasculatures and improved transmittance of the whole liver up to 23% at 550 nm. Using this model, we investigated the embolization performances of both liquid and particle-based embolic agents, including penetration depth, embolization end-points, injection pressure and spatial distribution dynamics. We found that the embolization endpoint of liquid embolic agent such as ethiodised oil was strongly dependent on the injection pressure, and the pressure quickly built up when reaching the capillary endings, which could cause embolic agent leaking and potential tissue damages. In contrast, for particle-based embolic agents such as poly-dl-lactide microparticles and CalliSpheres® beads, their embolization endpoints were mainly determined by the particle size, whereas the particle densities close to the endpoints dramatically dropped down, which with the penetration depth represented two critical factors determining the embolic distribution. Such a decellularized organ model may open a new route to visually and quantitatively characterize embolization effects of various embolotherapies. Keywords: Transarterial chemoembolization Embolic agents Decellularized liver matrix Vascular system Injection pressure”

--> Save-the-date: Akina, Inc's third annual Biotech-Pharma-Cancer-Research (BPCR) conference is August 26 at Kurz Purdue Technology Center (KPTC) (http://bpcrconference.com/).

No comments: