Thursday, February 20, 2020

PLGA from PolySciTech used in development of nanoparticle system for lung-cancer


Many chemotherapeutic agents, such as cisplatin, are highly toxic which limits the dose due to side effects. A delivery system which can improve the amount of drug which actually releases in the tumor site would improve this. Recently, researchers at University of Texas used PLGA (AP154) from PolySciTech (www.polyscitech.com) was used to create cisplatin-loaded PLGA nanoparticles for comparison to novel PEU nanoparticles. This research holds promise to provide for improved therapies against lung cancer. Read more: Iyer, Roshni, Tam Nguyen, Dona Padanilam, Cancan Xu, Debabrata Saha, Kytai T. Nguyen, and Yi Hong. "Glutathione-responsive biodegradable polyurethane nanoparticles for lung cancer treatment." Journal of Controlled Release (2020). https://www.sciencedirect.com/science/article/pii/S0168365920301115

“Highlights: Glutathione is abundantly available in lung cancer microenvironment. Biodegradable polyurethane nanoparticles were fabricated via a single emulsion with a mixed organic solvent. GSH-sensitive biodegradable polyurethane nanoparticles (GPUs) released encapsulated cisplatin in response to elevated glutathione levels. Cisplatin loaded GPUs significantly reduced tumor growth in a subcutaneously xenograft A549 lung tumor mouse model compared to the free cisplatin. Abstract: Lung cancer is one of the major causes of cancer-related deaths worldwide. Stimuli-responsive polymers and nanoparticles, which respond to exogenous or endogenous stimuli in the tumor microenvironment, have been widely investigated for spatiotemporal chemotherapeutic drug release applications for cancer chemotherapy. We developed glutathione (GSH)-responsive polyurethane nanoparticles (GPUs) using a GSH-cleavable disulfide bond containing polyurethane that responds to elevated levels of GSH within lung cancer cells. The polyurethane nanoparticles were fabricated using a single emulsion and mixed organic solvent method. Cisplatin-loaded GSH-sensitive nanoparticles (CGPU) displayed a GSH-dose dependent release of cisplatin. In addition, a significant reduction in in vitro survival fraction of A549 lung cancer cells was observed compared to free cisplatin of equivalent concentration (survival fraction of ~0.5 and ~0.7, respectively). The in vivo biodistribution studies showed localization of fluorescently labeled GPUs (~7% of total injected dose) in the lung tumor regions after mouse-tail IV injections in xenograft A549 lung tumor models. The animals exposed to CGPUs also exhibited the inhibition of lung tumor growth compared to animals administered with saline (tumor growth rate of 1.5 vs. 13 in saline) and free cisplatin (tumor growth rate of 5.9) in mouse xenograft A549 lung tumor models within 14 days. These nanoparticles have potential to be used for on-demand drug release for an enhanced chemotherapy to effectively treat lung cancer.”

--> Save-the-date: Akina, Inc's third annual Biotech-Pharma-Cancer-Research (BPCR) conference is August 26 at Kurz Purdue Technology Center (KPTC) (http://bpcrconference.com/).

No comments: