Wednesday, May 13, 2020

PLGA from PolySciTech used in development of nanoparticle therapy for skin cancer


Photodynamic therapy is a process in which cancer cells are targeted with a chemical substance that remains dormant until it is illuminated by a specific wavelength of light which activates it killing the cell. This two-step process minimizes damage to healthy cells which is a common side-effect of conventional chemotherapy. Recently, researchers at Wroclaw University (Poland) used PLGA (AP022) from PolySciTech (www.polyscitech.com) to develop photosensitizing nanoparticles which are uptaken into melanoma (skin cancer) cells. This research holds promise to provide for improved cancer therapies in the future. Read more: Bazylińska, Urszula, Dominika Wawrzyńczyk, Anna Szewczyk, and Julita Kulbacka. "Engineering and biological assessment of double core nanoplatform for co-delivery of hybrid fluorophores to human melanoma." Journal of Inorganic Biochemistry (2020): 111088. https://www.sciencedirect.com/science/article/pii/S0162013420301161

“Abstract: We investigated new development in photodynamic therapy (PDT) aiming at enhanced tumor selectivity and biocompatibility, which included application of a third-generation photosensitizing agent, i.e. xanthene-origin Rose Bengal (RB) co-encapsulated with up-converting NaYF4 nanoparticles (NPs) co-doped with lanthanide ions: Er3+ (2%) and Yb3+ (20%). The hybrid fluorophores were applied as components of double core nanocarriers (NCs) obtained by double (multiple) emulsion solvent evaporation process. Next to improve the biocompatibility and photodynamic activity, biodegradable polymer: poly(lactide-co-glycolide) – PLGA and non-ionic surfactants with different hydrophobicity: Span 80 and Cremophor A25, were used. After the engineering process, controlled by dynamic light scattering (DLS) measurements, ζ-potential evaluation, transmission electron and atomic force microscopy (TEM and AFM) imaging, as well as optical analysis provided by measurements of the up-conversion emission spectra and luminescence kinetics for encapsulated only NaYF4:Er3+,Yb3+ NPs and co-encapsulated RB + NaYF4:Er3+,Yb3+ molecules, spherical polyester NCs with average size

No comments: