Tuesday, February 9, 2021

PLGA-PEG-Mal From PolySciTech used to develop immunotherapy nanoparticles

 

Most treatments against cancer (radiation, chemotherapy, surgical removal) rely on destroying or removing the tumor tissue as part of the therapy directly. Immunotherapy is a different mechanism in which the immune system is effectively ‘trained’ (for lack of a better description) to recognize and attack the cancer. Recently, researchers at University of California San Fransisco (UCSF) used PLGA-PEG-Mal (AI053) from PolySciTech (www.polyscitech.com) to develop nanoparticles which bear a variety of markers on their outer surface that induce an immune reaction against cancer. This research holds promise to improve therapies against cancer. Read more: Levy, Elizabeth S., Ryan Chang, Colin R. Zamecnik, Miqdad O. Dhariwala, Lawrence Fong, and Tejal A. Desai. "Multi-Immune Agonist Nanoparticle Therapy Stimulates Type I Interferons to Activate Antigen-Presenting Cells and Induce Antigen-Specific Antitumor Immunity." Molecular Pharmaceutics (2021). https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.0c00984

“Cancer immunity is mediated by a delicate orchestration between the innate and adaptive immune system both systemically and within the tumor microenvironment. Although several adaptive immunity molecular targets have been proven clinically efficacious, stand-alone innate immunity targeting agents have not been successful in the clinic. Here, we report a nanoparticle optimized for systemic administration that combines immune agonists for TLR9, STING, and RIG-I with a melanoma-specific peptide to induce antitumor immunity. These immune agonistic nanoparticles (iaNPs) significantly enhance the activation of antigen-presenting cells to orchestrate the development and response of melanoma-sensitized T-cells. iaNP treatment not only suppressed tumor growth in an orthotopic solid tumor model, but also significantly reduced tumor burden in a metastatic animal model. This combination biomaterial-based approach to coordinate innate and adaptive anticancer immunity provides further insights into the benefits of stimulating multiple activation pathways to promote tumor regression, while also offering an important platform to effectively and safely deliver combination immunotherapies for cancer. KEYWORDS: polymeric nanoparticles cancer immunotherapy innate immunity immunology”

No comments: