Wednesday, March 10, 2021

PEG-PLGA from PolySciTech used in research on microfluidic nanoparticle preparation

 

There are many different methods available by which nanoparticles can be formulated. One method is to use microfluidic systems to create the particles under carefully controlled conditions. Recently, researchers at The University of Queensland (Australia) used mPEG-PLGA (AK026) from PolySciTech (www.polyscitech.com) to research nanoprecipitation methods to create drug-loaded nanoparticles. This research holds promise to provide for improved nanoparticle manufacturing capabilities. Read more: Li, Wei, Qiaoli Chen, Thejus Baby, Song Jin, Yun Liu, Guangze Yang, and Chun-Xia Zhao. "Insight into drug encapsulation in polymeric nanoparticles using microfluidic nanoprecipitation." Chemical Engineering Science 235 (2021): 116468. https://www.sciencedirect.com/science/article/pii/S0009250921000336

“Highlights: A combined computational fluid dynamics (CFD) and experimental approach to illustrate microfluidic nanoprecipitation. Mixing times of a polymer and a drug are determined using a CFD method. Drug loading is dependent on the mixing time of the polymer and drug. The precipitation time of polymer and drug should be matched for drug encapsulation. Abstract: Synthesis of polymeric nanoparticles (NPs) through self-assembly of di-block copolymers have attracted substantial interest in the past decades for drug delivery and controlled release. Microfluidics offers a facile approach for making such NPs and drug encapsulation. However, a fundamental understanding of the drug encapsulation process is lacking. In this paper, we report a combined computational fluid dynamics (CFD) and experimental approach to illustrate the fundamental principle that governs the encapsulation of a drug in polymeric NPs through microfluidic nanoprecipitation. Taking a drug curcumin and a polymer poly (ethylene glycol)-block-poly (d, l-lactide-co-glycolide) (PEG-PLGA) as a model system, we demonstrated the different precipitation times of curcumin and PEG-PLGA as well as their mixing times in the microfluidic device. The big difference in their mixing times led to very low drug loading. This study provides a new perspective in understanding and controlling the formation of drug-loaded polymeric NPs and offers a new design rule for selecting the right combinations of drugs, polymers, solvents, and devices. Keywords Microfluidic Self-assembly Nanoparticles mPEG-PLGA Polymer nanoparticles Nanoprecipitation Drug encapsulation”

No comments: