Monday, February 27, 2023

PLCL from PolySciTech used in development of heart valve replacement for tissue engineering


Tissue engineering is a process where a cell scaffold or other structure is provided to allow for damaged or missing parts of the human body to regrow. The bioresorbable scaffold should match the mechanical properties of the tissue to be replaced as well as provide a surface for cells to attach to and grow on. Researchers at University of Missouri used PLCLs with a range of LA:CL ratios (cat# AP147, AP015, AP151, AP262) from PolySciTech division of Akina, Inc. ( to develop a mechanically robust and elastic heart valve replacement. This research holds promise to regrow or replace damaged portions of heart tissue. Read more: Snyder, Yuriy, and Soumen Jana. "Elastomeric Trilayer Substrates with Native-like Mechanical Properties for Heart Valve Leaflet Tissue Engineering." ACS Biomaterials Science & Engineering (2023).

“Heart valve leaflets have a complex trilayered structure with layer-specific orientations, anisotropic tensile properties, and elastomeric characteristics that are difficult to mimic collectively. Previously, trilayer leaflet substrates intended for heart valve tissue engineering were developed with nonelastomeric biomaterials that cannot deliver native-like mechanical properties. In this study, by electrospinning polycaprolactone (PCL) polymer and poly(l-lactide-co-ε-caprolactone) (PLCL) copolymer, we created elastomeric trilayer PCL/PLCL leaflet substrates with native-like tensile, flexural, and anisotropic properties and compared them with trilayer PCL leaflet substrates (as control) to find their effectiveness in heart valve leaflet tissue engineering. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for 1 month in static conditions to produce cell-cultured constructs. The PCL/PLCL substrates had lower crystallinity and hydrophobicity but higher anisotropy and flexibility than PCL leaflet substrates. These attributes contributed to more significant cell proliferation, infiltration, extracellular matrix production, and superior gene expression in the PCL/PLCL cell-cultured constructs than in the PCL cell-cultured constructs. Further, the PCL/PLCL constructs showed better resistance to calcification than PCL constructs. Trilayer PCL/PLCL leaflet substrates with native-like mechanical and flexural properties could significantly improve heart valve tissue engineering. KEYWORDS: elastomer electrospinning trilayer tissue engineering heart valve leaflet calcification”


No comments: