Monday, February 20, 2023

PLGA from PolySciTech used in development of genipin modified sutures for surgical repair of tendons

 


Sutures mechanically hold tissue closed in place so that wounds or surgical incisions can heal. They can also provide a platform for drug release or bioactive surface which can have additional therapeutic effects. Researchers at Balgrist University Hospital, ETH Zurich, and Cantonal Hospital Lucerne used PLGA (AP081) from PolySciTech division of Akina, Inc. (www.polyscitech.com) to create coated genipin-coated sutures for tendon repair. They applied this modified suture to repairing tendons which typically do not heal well after injury. This research holds promise to improve surgical repairs for traumatic injuries. Read more: Götschi, Tobias, Anne-Gita Scheibler, Patrick Jaeger, Karl Wieser, Claude Holenstein, Jess G. Snedeker, and Roland S. Camenzind. "Improved suture pullout through genipin-coated sutures in human biceps tendons with spatially confined changes in cell viability." Clinical Biomechanics (2023): 105907. https://www.sciencedirect.com/science/article/pii/S0268003323000384

“Highlights: Suture cut-through is a common cause of rotator cuff repair failure. Coating the suture with collagen cross-linker enhances strength of suture-tendon interface. Short-term in vitro culturing reduces tenocyte viability near suture. No difference in cell viability between treatment groups at 3 mm + from suture. Abstract: The suture-tendon interface often constitutes the point of failure in tendon suture repair. In the present study, we investigated the mechanical benefit of coating the suture with a cross-linking agent to strengthen the nearby tissue after suture placement in human tendons and we assessed the biological implications regarding tendon cell survival in-vitro. Freshly harvested human biceps long head tendons were randomly allocated to control (n = 17) or intervention (n = 19) group. According to the assigned group, either an untreated or a genipin-coated suture was inserted into the tendon. 24 h after suturing, mechanical testing composed of cyclic and ramp-to-failure loading was performed. Additionally, 11 freshly harvested tendons were used for short-term in vitro cell viability assessment in response to genipin-loaded suture placement. These specimens were analyzed in a paired-sample setting as stained histological sections using combined fluorescent/light microscopy. Tendons stitched with a genipin-coated suture sustained higher forces to failure. Cyclic and ultimate displacement of the tendon-suture construct remained unaltered by the local tissue crosslinking. Tissue crosslinking resulted in significant cytotoxicity in the direct vicinity of the suture (<3 mm). At larger distances from the suture, however, no difference in cell viability between the test and the control group was discernable. The repair strength of a tendon-suture construct can be augmented by loading the suture with genipin. At this mechanically relevant dosage, crosslinking-induced cell death is confined to a radius of <3 mm from the suture in the short-term in-vitro setting. These promising results warrant further examination in-vivo. Keywords: Tendon Suture Soft tissue repair Collagen crosslinking Mechanical testing Cell viability”

Video: https://youtu.be/GWGbUs5gaF4

No comments: