Thursday, June 27, 2024

PLGA-PEG-PLGA from PolySciTech used in development of ocular release platform for treatment of secondary cataracts

 

Cataracts are the second leading cause of blindness with over 100 million cataract surgeries performed worldwide. A common complication from cataract surgery is the formation of ‘secondary cataracts’ created by tissue response to the surgical process. Researchers at Rowan University, Philadelphia College of Osteopathic Medicine, Genisphere, LLC, and OcuMedic, Inc., used thermogelling PLGA-PEG-PLGA (cat# AK097) from PolySciTech Division of Akina, Inc. (www.polyscitech.com) to create a gel formulation for the controlled release of therapeutic DNA which reduces secondary cataract formation. This research holds promise to provide for treatment against cataract-induced blindness. Read more: Vardar, Camila, Mindy George-Weinstein, Robert Getts, and Mark E. Byrne. "Evaluation of Dose–Response Relationship in Novel Extended Release of Targeted Nucleic Acid Nanocarriers to Treat Secondary Cataracts." Journal of Ocular Pharmacology and Therapeutics (2024). https://www.liebertpub.com/doi/abs/10.1089/jop.2024.0024

“Abstract: Purpose: The present study aimed to determine the dose–response relationship between targeted nanocarriers released from a novel, sustained release formulation and their ability to specifically deplete cells responsible for the development of posterior capsular opacification (PCO) in month-long, dynamic cell cultures. Methods: Injectable, thermosensitive poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic acid) triblock copolymer hydrogels were loaded with either a low or a high dose of doxorubicin-loaded antibody-targeted nanocarriers (G8:3DNA:Dox). Human rhabdomyosarcoma cells, selected for their expression of PCO marker brain-specific angiogenesis inhibitor 1 (BAI1), were kept under dynamic media flow and received either a low or high dose of nanocarriers. Cells were fixed and stained at predetermined time points to evaluate targeted depletion of BAI1+ cells. Results: A lower dose of nanocarriers in hydrogel depleted BAI1+ cells at a slower rate than the higher dose, whereas both reached over 90% BAI1+ cellular nonviability at 28 days. Both treatment groups also significantly lowered the relative abundance of BAI1+ cells in the population compared with the control group. Conclusions: Controlled release of a lower dose of nanocarriers can still achieve therapeutically relevant effects in the prevention of PCO, while avoiding potential secondary effects associated with the administration of a higher dose.”

PLGA-PEG-PLGA AK097: https://akinainc.com/polyscitech/products/polyvivo/index.php?highlight=AK097#h

NEW: Corbion Purasorb® Polymers: https://akinainc.com/polyscitech/products/purasorb/

NEW: Ashland-TM products: https://akinainc.com/polyscitech/products/ashland/

No comments: