Tuesday, November 12, 2019

PLGA from PolySciTech used in optimization of nanoparticle encapsulation of chemotherapeutic agent.

The single-emulsion technique is a widely used methodology to form nanoparticles when the drug to be loaded is hydrophobic enough to be directly dissolved into the organic solvent along with the polymer. The exact size and loading efficiency of these particles varies based on the manufacturing parameters and these can be optimized to provide for the highest quality nanoparticles. Recently, researchers at University of Houston used PLGA (AP041) from PolySciTech (www.polyscitech.com) and single-emulsion based techniques to optimize the nanoparticle encapsulation method for a chemotherapy drug. This research holds promise for improved therapy against cancer. Read more: Holley, Claire K., Bridgett Sinquefield, and Sheereen Majd. "Optimization of the Single Emulsion Method for Encapsulation of a Cancer Drug in Nanoparticles." In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1078-1081. IEEE, 2019. https://ieeexplore.ieee.org/abstract/document/8857458/

“Abstract: The goal of this study is to apply and optimize the single emulsion technique for encapsulation of an anti-tumor drug, Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), in nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA), as a step towards targeted delivery of this drug. We previously showed that the nanoprecipitation technique can effectively produce PLGA NPs carrying this drug. Here, we aim to examine the single emulsion technique as an alternative for the preparation of these NPs and to compare the resultant NPs to those from nanoprecipitation. We fabricated NPs with variations in (i) injection rate, (ii) the amount of surfactant poly (vinyl alcohol) (PVA) in aqueous phase, and (iii) concentration of PLGA in the organic phase. These NPs were characterized for size, surface potential, and encapsulation efficiency. The results revealed that increasing the injection rate (from manual addition to 90 mL/hr via syringe pump) greatly reduced the size of NPs (by 48%) and decreasing the PVA concentration in the aqueous phase (from 5 to 1% w/v) further reduced the NP size (by 32%) to 329 nm. All tested NP formulations had negative surface potential, suggesting good colloidal stability for these NPs. Focusing on the optimal injection rate and PVA percentage, we found that reducing the concentration of PLGA, from 100 to 1 mg/mL, significantly reduced the NP size to 136 nm, which is close to the optimal range for cancer therapeutic delivery. NPs produced by this method had a high encapsulation efficiency of 77% for Dp44mT and reducing the PLGA concentration slightly lowered this value to 74%. Overall, these NPs were comparable to those produced by nanoprecipitation and can thus, serve as an effective alternative for delivery of Dp44mT to cancer cells.”

No comments: