Wednesday, April 24, 2024

Fluorescently labelled PLGA from PolySciTech used in development of cell-modulating system for cancer immunotherapy

 


Delivery of drugs into solid tumors as well as cancers immunosuppressive effect on the surrounding microenvironment makes treatment of cancer challenging. One strategy to overcome this is to utilize a surface-attaching structure which promotes immune cells in the region of cancer to become pro-inflammatory and anti-tumor thus leading the human immune system to fight the cancer. Researchers at Harvard University used PLGA-rhodamine (AV011) and PLGA-Cyanine5 (AV034) from PolySciTech Division of Akina, Inc. (www.polyscitech.com) to develop ‘backpacks’ small structures which attach to myeloid cells and encourages them to participate in immune attack of cancer. This research holds promise to treat many forms of aggressive cancer including immunosuppressive tumors. Read more: Kapate, Neha, Michael Dunne, Alexander P. Gottlieb, Malini Mukherji, Vineeth Chandran Suja, Supriya Prakash, Kyung Soo Park, Ninad Kumbhojkar, Jennifer L. Guerriero, and Samir Mitragotri. "Polymer Backpack‐loaded Tissue Infiltrating Monocytes for Treating Cancer." Advanced Healthcare Materials (2024): 2304144. https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.202304144

“Adoptive cell therapies are dramatically altering the treatment landscape of cancer. However, treatment of solid tumors remains a major unmet need, in part due to limited adoptive cell infiltration into the tumor and in part due to the immunosuppressive tumor microenvironment. The heterogeneity of tumors and presence of non-responders also calls for development of antigen-independent therapeutic approaches. Myeloid cells offer such an opportunity, given their large presence in the immunosuppressive tumor microenvironment, such as in triple negative breast cancer. However, their therapeutic utility is hindered by their phenotypic plasticity. Here, we leverage the impressive trafficking ability of adoptively transferred monocytes into the immunosuppressive 4T1 tumor to develop an anti-tumor therapy. To control monocyte differentiation in the tumor microenvironment, we developed surface-adherent “backpacks” stably modified with IFNγ to stimulate macrophage plasticity into a pro-inflammatory, anti-tumor phenotype, a strategy we refer to as Ornate Polymer-backpacks on Tissue Infiltrating Monocytes (OPTIMs). Treatment with OPTIMs substantially reduced tumor burden in a mouse 4T1 model and significant increased survival. Cytokine and immune cell profiling revealed that OPTIMs remodeled the tumor microenvironment into a pro-inflammatory state.”

AV011: https://akinainc.com/polyscitech/products/polyvivo/index.php?highlight=AV011#h

AV034: https://akinainc.com/polyscitech/products/polyvivo/index.php?highlight=AV034#h

NEW: Corbion Purasorb® Polymers: https://akinainc.com/polyscitech/products/purasorb/

NEW: Ashland-TM products: https://akinainc.com/polyscitech/products/ashland/

Video: https://youtu.be/iZWn62jiE_I

No comments: