Wednesday, March 27, 2024

mPEG-PLGA from PolySciTech used in development of PARP/Kinase inhibitor drug delivery systems against cancer

 

There are a wide range of anticancer agents which prevent tumor growth by inhibiting cellular functions. PARP inhibitors, for example, prevent cancer cells from repairing strand breaks in their DNA structures leading to eventual cell death. Additionally, cyclin dependent kinase inhibitors prevent the cell from responding to DNA damage thus amplifying the effect of PARP inhibitors. Drugs based on interfering with the cellular operations of cancer cells can be effective at stopping tumor growth, but can also have serious side effects against healthy cells. Researchers at Northeastern University and Harvard Medical School used mPEG-PLGA (Cat# AK010) from PolySciTech Division of Akina, Inc. (www.polyscitech.com) to create a nanoparticle delivery system combining the effects of a kinase inhibitor and a PARP inhibitor and tested the efficacy of this system against cancer cells. This research holds promise to provide for improved therapy against cancer in the future. Read more: Baldwin, Paige, Shicheng Yang, Adrienne Orriols, Sherrie Wang, Needa Brown, and Srinivas Sridhar. "A nano-cocktail of the PARP inhibitor talazoparib and CDK inhibitor dinaciclib for the treatment of triple negative breast cancer." Cancer Nanotechnology 15, no. 1 (2024): 1-16. https://cancer-nano.biomedcentral.com/articles/10.1186/s12645-023-00240-4

“The addition of the cyclin dependent kinase inhibitor (CDKi) dinaciclib to Poly-(ADP-ribose) polymerase inhibitor (PARPi) therapy is a strategy to overcome resistance to PARPi in tumors that exhibit homologous recombination (HR) deficiencies as well as to expand PARPi therapy to tumors that do not exhibit HR deficiencies. However, combination therapy using pathway inhibitors has been plagued by an inability to administer doses sufficient to achieve clinical benefit due to synergistic toxicities. Here we sought to combine nanoformulations of the PARPi talazoparib, nTLZ, and the CDKi dinaciclib, nDCB, in a nano-cocktail to enhance therapeutic efficacy while maintaining lower doses. Pharmacokinetics of nDCB were assessed to ensure it is compatible with nTLZ. nDCB was combined with nTLZ to generate a nano-cocktail nDCB:nTLZ, which elicits greater cell death in vitro compared to the combination of the free drugs. MDA-MB-231-LUC-D3H2LN xenografts were utilized to assess therapeutic efficacy of the nano-cocktail in terms of tumor progression. Administration of the nano-cocktail significantly slowed tumor progression in the HR proficient animal model compared to administration of free talazoparib and free dinaciclib at the same doses. Histology of the liver, spleen, and kidneys revealed long-term treatment did not induce nanoparticle associated morphological changes. Complete blood count did not reveal any significant hematologic changes after treatment with either the free combination or nano-cocktail. The efficacy and toxicity data suggest that further dose escalation can be pursued in order to achieve a stronger response. These data suggest the administration of combination therapy through the nano-cocktail leads to a better response than the use of free compounds and is a promising strategy for implementing combination therapy in the clinic.”

See more about the mPEG-PLGA used in this study (AK010): https://akinainc.com/polyscitech/products/polyvivo/index.php?highlight=AK010#h

NEW: Corbion Purasorb® Polymers: https://akinainc.com/polyscitech/products/purasorb/

NEW: Ashland-TM products: https://akinainc.com/polyscitech/products/ashland/

Video: https://youtu.be/TWB0QxxSUsE

No comments: