Tuesday, April 6, 2021

mPEG-PLA from PolySciTech used in development of solid-tumor immunotherapy

 


Immunotherapy is a process by which the human immune system is leveraged to attack the cancer directly. This must be done with care, however, as the human immune system can cause a great deal of damage if it is not well directed even potentially killing a patient through anaphylaxis. For this reason, localized immunotherapy is better than priming the systemic immune system for attack. Recently, researchers at Cello Therapeutics, Inc. and University of California San Diego used PEG-PLA (AK054) from PolySciTech (www.polyscitech.com) to create pegylated nanoparticles. The used these to test the impact of toll-like receptor agonists on immune response in solid tumors. This research holds promise to improve cancer therapies in the future. Read more: Bahmani, Baharak, Hua Gong, Brian T. Luk, Kristofer J. Haushalter, Ethel DeTeresa, Mark Previti, Jiarong Zhou et al. "Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors." Nature Communications 12, no. 1 (2021): 1-12. https://www.nature.com/articles/s41467-021-22311-z

“Intratumoral immunotherapy is an emerging modality for the treatment of solid tumors. Toll-like receptor (TLR) agonists have shown promise for eliciting immune responses, but systemic administration often results in the development of adverse side effects. Herein, we investigate whether localized delivery of the TLR agonist, resiquimod (R848), via platelet membrane-coated nanoparticles (PNP-R848) elicits antitumor responses. The membrane coating provides a means of enhancing interactions with the tumor microenvironment, thereby maximizing the activity of R848. Intratumoral administration of PNP-R848 strongly enhances local immune activation and leads to complete tumor regression in a colorectal tumor model, while providing protection against repeated tumor re-challenges. Moreover, treatment of an aggressive breast cancer model with intratumoral PNP-R848 delays tumor growth and inhibits lung metastasis. Our findings highlight the promise of locally delivering immunostimulatory payloads using biomimetic nanocarriers, which possess advantages such as enhanced biocompatibility and natural targeting affinities.”

No comments: