Tuesday, April 6, 2021

PLGA from PolySciTech used in development of chemo-catalytic therapy for treatment of cancer

 


Despite their exotic structures, enzymes are merely machines of the body which individually serve very simple functions based on their chemical reactive sites and their overall shape. This opens up the potential to make ‘artificial’ enzymes simply by providing an item which has a similar shape and chemical reactivity, regardless of its overall chemical design. One method of treating cancer is to generate nanoparticles which have the ability to behave like enzymes in catalyzing certain interactions which lead to destruction of the cancer cells. This can be combined with other forms of chemotherapy for a powerful treatment method. Recently, researchers at Yangzhou University, Chinese Academy of Sciences, and First Affiliated Hospital of Soochow University (China) used PLGA (AP132) from PolySciTech (www.polyscitech.com) to create manganese-oxide based artificial oxidase-enzyme like structures and combined these with artesunate drug. This research holds promise to improve therapies against cancer. Read more: Xi, Juqun, Yaling Huang, Jie Chen, Jingjing Zhang, Lizeng Gao, Lei Fan, and Xiaodong Qian. "Artesunate-loaded poly (lactic-co-glycolic acid)/polydopamine-manganese oxides nanoparticles as an oxidase mimic for tumor chemo-catalytic therapy." International Journal of Biological Macromolecules (2021). https://www.sciencedirect.com/science/article/pii/S0141813021006590

“Conventional tumor chemotherapy is limited by its low therapeutic efficacy and side effects, which severely hold back its further application as a first-line agent in clinic. To improve the cure efficacy of cancer, nanozyme with enzyme-like activity has now been extensively investigated as a new strategy for tumor treatment. Herein, an anti-tumor platform based on manganese oxides (MnOx) modified poly (lactic-co-glycolic acid) (PLGA)@polydopamine (PDA) nanoparticles (PP-MnOx NPs) as an oxidase mimic was developed. PP-MnOx NPs could not only produce abundant reactive oxygen species to inhibit tumor growth taking advantage of their oxidase-like activity, but also encapsulate and release antitumor drug (artesunate) to function as chemotherapy, achieving remarkable synergistic chemo-catalytic therapeutic effects. As an oxidase mimics, PP-MnOx NPs induced the decrease of mitochondrial membrane potential, down-regulation of Bcl-2, as well as activation of Bax and Caspase-3, demonstrating that the apoptosis triggered by PP-MnOx NPs was mediated via mitochondrial pathways. Importantly, the artesunate in PP-MnOx NPs further promoted this apoptosis. In addition, Mn ions released from PP-MnOx NPs facilitated the tumor-microenvironment-specific T1-weighted magnetic resonance imaging. Taken together, this study well clarifies the antitumor mechanism of artesunate-loaded PP-MnOx NPs and offer a synergistic chemo-catalytic strategy for tumor theranostics. Keywords: MnOx modified PLGA/polydopamine nanoparticles Oxidase Reactive oxygen species Chemo-catalytic tumor therapy”

No comments: