Tuesday, April 6, 2021

PEG-PCL/PEG-PLA polymers from PolySciTech used in research on structure of self-assembled nanocarriers

 


Despite their popular use, much remains to be learned about the structure and nature of self-assembled PEGylated nanocarriers comprised of PEG-block polymers. One means to do this is to load tetra tert-butyl zinc(II) phthalocyanine spectroscopic probes into the carrier and then bombard them with radio-frequency electromagnetic radiation under powerful magnetic fields and measure their UV-Vis spectra, as one normally does. Recently, researchers at Wroclaw University of Science and Technology (Poland) used mPEG-PCL (AK074) and mPEG-PLA (AK084) from PolySciTech (www.polyscitech.com) to conduct advanced research on the nanoparticle structure. This holds promise to improve the use of these carriers in a variety of formulation approaches. Read more: Lamch, Łukasz, Roman Gancarz, Marta Tsirigotis-Maniecka, Izabela M. Moszyńska, Justyna Ciejka, and Kazimiera A. Wilk. "Studying the “Rigid–Flexible” Properties of Polymeric Micelle Core-Forming Segments with a Hydrophobic Phthalocyanine Probe Using NMR and UV Spectroscopy." Langmuir (2021). https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.1c00328

“Abstract: The aim of the performed studies was to thoroughly examine the internal structure of self-assembled nanocarriers (i.e., polymeric micelles—PMs) by means of a hydrophobic phthalocyanine probe in order to identify the crucial features that are required to enhance the photoactive probe stability and reactivity. PMs of hydrophilic poly(ethylene glycol) and hydrophobic poly(ε-caprolactone) (PCL) or poly(d,l-lactide) (PDLLA) were fabricated and loaded with tetra tert-butyl zinc(II) phthalocyanine (ZnPc-t-but4), a multifunctional spectroscopic probe with a profound ability to generate singlet oxygen upon irradiation. The presence of subdomains, comprising “rigid” and “flexible” regions, in the studied block copolymers’ micelles as well as their interactions with the probe molecules, were assessed by various high-resolution NMR measurements [e.g., through-space magnetic interactions by the 1D NOE effect, pulsed field gradient spin-echo, and spin–lattice relaxation time (T1) techniques]. The studies of the impact of the core-type microenvironment on the ZnPc-t-but4 photochemical performance also included photobleaching and reactive oxygen species measurements. ZnPc-t-but4 molecules were found to exhibit spatial proximity effects with both (PCL and PDLLA) hydrophobic polymer chains and interact with both subdomains, which are characterized by different rigidities. It was deduced that the interfaces between particular subdomains constitute an optimal host space for probe molecules, especially in the context of photochemical stability, photoactivity (i.e., for significant enhancement of singlet oxygen generation rates), and aggregation prevention. The present contribution proves that the combination of an appropriate probe, high-resolution NMR techniques, and UV–vis spectroscopy enables one to gain complex information about the subtle structure of PMs essential for their application as nanocarriers for photoactive compounds, for example, in photodynamic therapy, nanotheranostics, combination therapy, or photocatalysis, where the micelles constitute the optimal microenvironment for the desired photoreactions.”

No comments: